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Power Law Growth for the Resistance 
in the Fibonacci Model 
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Many one-dimensional quasiperiodic systems based on the Fibonacci rule, such 
as the tight-binding Hamiltonian H~p(n) = O(n + 1) + 0 ( n -  1) + 2v(n) 0(n), 
n e Y, 0 e I2(2~), 2 e N, where v(n) = [(n + 1 ) ~] - [nc~], Ix ]  denoting the integer 
part of x and e the golden mean ( , , / 5 -  1)/2, give rise to the same recursion 
relation for the transfer matrices. It is proved that the wave functions and the 
norm of transfer matrices are polynomially bounded (critical regime) if and only 
if the energy is in the spectrum of the Hamiltonian. This solves a conjecture of 
Kohmoto and Sutherland on the power-law growth of the resistance in a 
one-dimensional quasicrystal. 

KEY W O R D S :  Periodic Hamiltonian; Fibonacci chain; transfer matrix. 

1, I N T R O D U C T I O N  

Quasiperiodic structures play an important role in solid state physics,(~~ 
based on the experimental evidence of quasicrystals/3~) In quantum 
mechanics, it is important to know when the states are localized, extended, 
or critical, depending on the value of the energy. We characterize here one 
aspect of this critical behavior for the following two-valued potential, 
which has been intensively studied: 

(H~k)(n)=tp(n+l)+t~(n-1)+20(n)~p(n), n ~  (1) 

where O(n)=[(n+l)~]-[nc~],[x] denoting the integer part of x, 
tp ~ 12(2~), 2 ~ ff~, and c~ is the golden mean ( x / 5 - 1 ) / 2 .  (3-5'13'14'18'26'30) The 
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spectrum of this Hamiltonian is a Cantor set of zero Lebesgue measure 
for 2 r 0 even if ~ is any irrational number. Moreover, it is singular 
continuous. (3'3~ The essential tool for these studies is the transfer matrix 
technique: 

Let 0 be a solution of H0 -- EO and T(n) be the transfer matrix 

namely 

Define 

T(n): O(n)'~=(O(~n+)l)) l<~n~N 
\ r  1)J ( ' 

M(n) = T(n)... T(2) T(I) e SL(2, ~) 

Mo = M(q . )  

where q. are the Fibonacci numbers given by the recursion rule 

q.+l--- q~+q.-1 with q0 =1 ,  q l = l  

These numbers are associated to the golden mean a = (x/-5-1)/2 since 
q.-l/q,~ are the best rational approximants of c~ (Ic~- q._ ~/q.I < 1/q.q.+ 1). 

It is easy to compute the spectrum of H because it is related to the 
trace of transfer matrices. Actually, for the tight-binding model (1), one has 
the recursion 

M.+I = M . _ I M .  (2) 

Naturally M.  depends on the energy E. Equation (2) implies 

x.+l = x . x . _ l - x . _ 2 ,  x. = trace(M.) (3) 

All physical information concerning the system can be extracted from (2). 
Conversely, there exist many different properties associated with interesting 
physical models, for instance, the electronic and phonon properties for 
tight-binding interactions (12) and the optical properties of multilayers. (16) 
Kohmoto and Sutherland, (11'32) taking the Landauer formula as a working 
definition of resistance, have calculated the electrical resistance of a sample. 
They conjectured that, for a one-dimensional noninteracting electronic 
system which contains n scattering potentials, the resistance p(n) is 
bounded by a power of the sample length n if and only if the energy is in 
the dynamical spectrum, i.e., if (x.) .  is a bounded sequence. (5'14) 
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This note is devoted to a proof of this conjecture. As indicated before, 
the only tool is the recursion relation (2), so the results apply as well to 
different situations. We emphasize only few examples. 

Electronic case." 

where ~k is the wave function and (t,)n is a Fibonacci sequence with two 
kinds of hopping terms. 

Phonon case." 

s.+ lq , .+  , + t~  - ( t . + ,  + t,,) qJ,, = 

where ~ denotes the displacement from the equilibrium position and (t,), 
is a Fibonacci sequence of two spring constants. 

Kronig-Penney model on a Fibonacci lattice with Hamiltonian 

d 2 
/4= E 

J 

where 2 > 0 and xj is a Fibonacci sequence. (1'~2"~5'33'37) 
Silt6 (29'3~ proved that the Lyapunov exponent 

is :zero when E is in the spectrum of H. We improve his result by showing 
that JIM(n, E)II is polynomially bounded if and only if E is in the spectrum 
of H. 

2. THE RESULT 

Let a(H) be the spectrum of H. 

Theorem 1. E t a ( H )  if and only if [IM(n)[I is polynomially 
bounded in n: There exists a constant /1 such that IlM(n)]l<<.nr 
l ~<n~N.  

Corollary 2. E t a ( H )  if and only if ~/~ such that [O(n)l~<[n[~, 
Vne2,  n r  

In this model, the power law growth is a consequence of the equality 
of the spectrum and the dynamical spectrum. So it is not clear that the 
corollary still applies in more general situations. 

For instance, the classical theory of eigenvalue expansions for 
Carleman operators (see ref. 2, Chapter 5) implies, in a very general situa- 
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tion (bounded potential) that for almost all spectral values with respect to 
the spectral measure and for e > 0, there exist generalized eigenfunctions 
which grow not faster than Inl 1+ ~. Here, the results are valid for all spectral 
values and the price to be paid is the dependence of/~ on 2. Clearly our 
estimates are not optimal (think of the case ;~ = 0), but improvement on the 
real physical dependence of the resistance on the coupling constant by 
numerical computation appears as a difficult question: Recall that the 
spectrum is singular continuous. 

Proof. By definition, 

( ~s(n + 1)~ = M(n) (0 (1 )~  
qs(n) J \ O ( 0 ) J '  n~> 1 

The symmetry of the potential around - 1/2 gives 

( r  + . .  

O ( -  ( n + 2 ) )  = L t n l  \ O ( - 2 ) J '  

where  L (n )=  T(n) -~ ... T(2) -1 T(1)-~. ~29~ The analysis of the behavior of 
L(n) is similar to that of M(n) and the corollary is easily verified. 

Coro l la ry  3. The electrical resistance of a Fibonacci chain of 
scatterers is polynomially bounded in the number of scatterers if and only 
if the energy is in the spectrum. 

Proof. Due to Landauer's formula, the resistance p(n) for n 
scatterers is given by p(n) = �88 ~ - 2), where HA II ~ = Trace(A'A).  (16) 

Since IIAll ~< IlAll2~<x/2 I[Ail for any AeSL(2, ~), Theorem 1 can be 
applied. 

We will use freely Siit6's result: 

Lemma 4. (i) E~a(H) ifandonlyifc=sup, lx,l<oo. 
(ii) Let Eecr(H), Then there exists a constant a>~max(c, 2) such 

that 

IqM.IL ~< a', Vn, l ~ < n e N  (4) 

For the sake of completeness and since it is very simple, let us indicate that 
(4) follows by induction from 

M.=M._2M. ,=Mn_2(Xn_l~--Mnll)=Xn 1M._2-M2~_3 

with 

HM~-_~3ll = [IMn 31l 
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Notation. We denote by Pk(Y~,..., Yn) any polynomial of degree 
less than k of the variables (y~,..., y.). For Pk(X) k = ~2j = ~ ejx j we introduce 

k 

IPkl (x)= ~, I~jl xJ 
j = l  

with the natural generalization in many variables. The key point toward 
the proof of Theorem 1 is the linearization of a product M~M~ with a 
control on the growth of the coefficients: 

L e m m a  5.  
four polynomials P(k~ x,,..., x~+e), ie  {1, 2, 3, 4}, such that 

Let E 6 a ( H ) .  Let n, k e N with n >~2. Then there exist 

~_ p(2)  a~ p O )  M p~4)~ M.M~+~=P~I)M~+k .- x l V X n + k - l +  k n+k - 2 +  

(5) 
IP~'I (Ix~ ~i,..., I x , ~ + , l ) ~ ( 2 c + l )  k 

i ~ l  

L e m m a  6. 

Proof. 

M,,M,,+2 = 

MnMn + 3 = 

M n _  3 

Let n 6 iN. Then 

M~M.+ 2 =-- xnM.+ 2 - M.+  , 

M~M.+ 3= x~+ 2M~+ 2 -  ~ 

M . = x n _ I M . _ 2 + M ~ _ 3 - x .  3~ 

M]Mn+1 = ( x . M . - ~ )  Mn+l = x . M n + 2 - M n + l  

M 2 M~Mn+IM~+2 = n+2 = x ~ + ~ M . + 2 - ' ~  

M ~ _ 3 M . _ l M ~ l _ l  

( x . _ 3 M . _ , - M . _ 2 ) M ~ ' ~  by(6)  

x . -3~  - M . _ 2 ( x . _ I ~  - - M . _ l )  

X._3"~ - - x n _ 1 M . _ 2 + M , ,  

(6) 

(7) 

(8) 

Proof of  Lemma 5. If k ~ { 0 , 1 ) ,  then (5) 
2 ~ and (8). Moreover, Mn = x n M n -  1 - 

4 

IP~i)r (]Xn-ll ..... [xnl, Ix~+lP)~<2c+ 1 
i = 1  

follows from 
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Assume the lemma for k ~ { 1,..., I }. We have 

M,M,+I+ 1 = ( M , M , + t _  l) M,+I 

= (PI~IM,+,_I  + PIZ)IM,+z_2 

+ p(3) M + p(4) ~ ) Mn l--1 n + l - - 3  l--1 +l  

=p(1)l_l M,+~+a +PI2)~(Xn+t_2M,+z-M,+z_~) 

"~ P ~ 3 ) l ( X n +  l _  1 r a n + l _ ,  - -  ~ ) "~- Pl4_)l Mn + z 

To simplify the notations,  we neglected the variables (IX,_x[,..., Ix,+t_~l) .  
Defining 

/ + 1  1 

p(2) =Xn+ 2p52_)1 + p}4)1 
l + 1  l - -  

/ ) ( 3 )  p(3) = - P I ~  I "~- Xn-~-l-- l~t l--1 - - l +  1 

p(4) - P l ~ a  
l + 1  ~ 

we get polynomials  of order  less than [ + 1 and 

4 4 

i = 1  i = 1  

So the lemma is true at the order  1 + 1. 

Proof of Theorem 1. Let n 6 N*. There exists a unique index set of 
integers nz, I t  {O,...,N}, such that  nt+l-nl>~2 and n = ~ N = 0  q,,. Since 
3(k + qz) = 0(k) if 1 <~ k < qz+ 1 - 1, (29) then 

M ( n ) = T  t=o q" + q€ . . . T ( q , N ) . . . T ( 1 )  

= T q.~ -- .M~N 
l = 0  

= MnoM,,~ .. .  M,N 

Suppose first that  E e  a(H) and let us prove recursively on k >~ 1 that  

IIM,oM,~ �9 - �9 M,k[I ~< b-"~ + 2(k- 1)(ab),k (9) 

with b = 2c + 1. 
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Let us check the case k = 1: By Lemmas 4 and 5, 

(1) ]]Mnlll P(2) I IIM.oMn, II ~< Ie12,-nol + n,-n0, ]lMn,_xJI 
(4) + p(3)121_no IlMnl-zll + IP~-/7ol 

4 
<~ Z p(i) an1 ~ bnl-noan l 

?l  I - -  n O 

i = 1  

Assume (9) for k ~ { 1,..., l }. Then using Lemma 5 again, we have 

]]MnoMn~ "" Mn,M~z+II] = (MnoM/71) M122... Mm+IH 

--niP(l)- n~ I rIM~Mn2.. .  M,~+I[j 

+ P}~)-/7ol [JMnI-,M/72 "" Mn,+lH 

+ --niP(3)no[ [IM,,1-2M,,2""M12z+IN 

+ p(4) IlMn: - "Mn,<lr 
rt 1 - - /7  0 

~< I P(l)nl-n~] b-n1+2(t 1)(ab) "'+1 

+ p(2) b-/7~+1+2u-1)(ab)/7~+~ 
12I - -  /70 i 

+ pO) b-nI+2+2U-m)(ab)nt+l 
n I - - / 7 o t  

+ p(4) b-,,~+2(t-2)(ab)n~+l 
t l l  - -  nO 

4 
<~b-12,+2Z(ab)/7,+, ~ p(O 

- - n  I n O 

i = l  

~< b-~~ 2[(l+ 1)- 1](ab)nt+l 

and (9) is true for k = l +  1. 
This yields 

IIM(n)ll = IIM,,o... M~uI[ <. b2:V(ab ) n'v 

Since n t+ l -n t~>2 ,  n n - n o > ~ 2 N  and IIM(n)r] <~d ~u with d=ab2.  
Moreover, 

1 1)k+, +k 3 log(x/5 qk) 
q~ = 7 [ e - k  + ( _ e and klim~ ~ k log e-1 = 0 

Thus for N large enough, 

i]M(fl)] [ ~ d[lOg(xfl5 qk)]/log ~-~ ~ (dOog ~)/Iog ~ l ) l o g  n 

which proves the part "only if" of Theorem 1 with fl =( log x ~  log d)/log ~--1 
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Conversely, let E be real such that IlM(n)[I ~<n ~ when n goes to 
infinity. Since [Trace ( A ) [ ~ 2  (JAIl for any AEM2• [x.[ ~<2q~. But if 
Er  ~r(H), there exist a constant l a n d  N ~  ~ such that [xnl >~._..jcq,, Vn >>. N, ~29~ 
so a contradiction, and E~  a(H). 
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